A Toeplitz algorithm for polynomial J-spectral factorization

نویسندگان

  • Juan Carlos Zúñiga Anaya
  • Didier Henrion
چکیده

A block Toeplitz algorithm is proposed to perform the J-spectral factorization of a para-Hermitian polynomial matrix. The input matrix can be singular or indefinite, and it can have zeros along the imaginary axis. The key assumption is that the finite zeros of the input polynomial matrix are given as input data. The algorithm is based on numerically reliable operations only, namely computation of the null-spaces of related block Toeplitz matrices, polynomial matrix factor extraction and linear polynomial matrix equations solving.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral factorization of bi-infinite multi-index block Toeplitz matrices

In this paper we formulate a theory of LU and Cholesky factorization of bi-infinite block Toeplitz matrices A = (Ai−j )i,j∈Zd indexed by i, j ∈ Zd and develop two numerical methods to compute such factorizations. © 2002 Elsevier Science Inc. All rights reserved.

متن کامل

Asymptotic properties of the QR factorization of banded Hessenberg-Toeplitz matrices

We consider the Givens QR factorization of banded Hessenberg-Toeplitz matrices of large order and relatively small bandwidth. We investigate the asymptotic behavior of the R factor and the Givens rotation when the order of the matrix goes to infinity, and present some interesting convergence properties. These properties can lead to savings in the computation of the exact QR factorization and gi...

متن کامل

Positive Extensions , Fejér - Riesz Factorization and Autoregressive Filters in Two Variables

In this paper we treat the two-variable positive extension problem for trigonometric polynomials where the extension is required to be the reciprocal of the absolute value squared of a stable polynomial. This problem may also be interpreted as an autoregressive filter design problem for bivariate stochastic processes. We show that the existence of a solution is equivalent to solving a finite po...

متن کامل

Ldu Factorization Results for Bi - Infinite Andsemi - Infinite Scalar and Block Toeplitz

In this article various existence results for the LDU-factorization of semi-innnite and bi-innnite scalar and block Toeplitz matrices and numerical methods for computing them are reviewed. Moreover, their application to the orthonor-malization of splines is indicated. Both banded and non-banded Toeplitz matrices are considered. Extensive use is made of matrix polynomial theory. Results on the a...

متن کامل

Ldu Factorization Results for Bi-infinite and Semi-infinite Scalar and Block Toeplitz Matrices

ABSTllACT-In this article various existence results for the LDU-factorization of semi-infinite and bi-infinite scalar and block Toeplitz matrices and numerical methods for computing them are reviewed. Moreover, their application to the orthonormal-ization of splines is indicated. Both banded and non-banded Toeplitz matrices are considered. Extensive use is made of matrix polynomial theory. Resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2006